隨著6G、AI大模型與邊緣計算的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達6710億的醫(yī)療大模型壓縮至邊緣設備可運行范圍,支持基層醫(yī)院在本地完成從術前規(guī)劃到術中決策的全流程AI輔助;數(shù)字孿生工廠:通過邊緣計算實時映射生產(chǎn)線數(shù)據(jù),結合數(shù)字孿生技術實現(xiàn)產(chǎn)能預測、能耗優(yōu)化等智能決策,使工廠運營成本降低25%?!斑吘売嬎悴皇菍υ朴嬎愕奶娲?,而是智能世界的‘神經(jīng)末梢’?!北堵?lián)德CEO王偉表示。目前,該公司已擁有80余項知識產(chǎn)權,其邊緣計算產(chǎn)品已成功應用于礦山、邊緣節(jié)點的重要功能包括數(shù)據(jù)預處理、緩存加速和輕量級分析,從而減輕云端負擔。廣東主流邊緣計算應用場景
邊緣推理的重要價值在于將AI能力下沉至數(shù)據(jù)源頭,解決云端模式的延遲痛點。倍聯(lián)德通過“模型輕量化+異構計算”技術,使邊緣設備具備單獨決策能力:針對工業(yè)機器人控制場景,倍聯(lián)德采用“剪枝+量化+知識蒸餾”三重壓縮技術,將YOLOv5目標檢測模型體積從140MB壓縮至3.2MB,推理速度提升12倍。在某電子廠的實際應用中,邊緣設備可實時識別機械臂運動軌跡偏差,響應延遲從200毫秒降至15毫秒,故障停機時間減少65%。倍聯(lián)德E500系列邊緣服務器集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持動態(tài)任務分配。在自動駕駛測試中,該設備將激光雷達點云處理任務分配給GPU,將決策規(guī)劃任務分配給CPU,使單車每日處理數(shù)據(jù)量達10TB,同時功耗降低40%。廣東超市邊緣計算公司能源行業(yè)通過邊緣計算實現(xiàn)電網(wǎng)設備的預測性維護,降低非計劃停機損失。
作為國家專精特新“小巨人”企業(yè),深圳市倍聯(lián)德實業(yè)有限公司深耕邊緣計算領域十年,其安全解決方案已應用于智能制造、能源管理、智能交通等場景。公司重要團隊擁有50余項邊緣計算相關專項權利,并與華為、英特爾建立聯(lián)合實驗室,形成“硬件加固-軟件防護-智能運維”的三維防護體系。倍聯(lián)德邊緣計算網(wǎng)關采用TPM 2.0可信芯片,構建從硬件啟動到應用運行的信任鏈。其R300Q系列設備支持國密SM2/SM4算法,數(shù)據(jù)加密性能較傳統(tǒng)方案提升3倍。針對工業(yè)環(huán)境,設備外殼采用IP67防護等級,內置防電磁干擾模塊,可在-40℃至85℃極端溫度下穩(wěn)定運行。在某鋼鐵企業(yè)的高爐監(jiān)測項目中,該設備成功抵御了強電磁脈沖攻擊,保障了數(shù)據(jù)采集的連續(xù)性。
在自動駕駛技術加速落地的進程中,一場關于“數(shù)據(jù)傳輸效率”與“決策時效性”的博弈正成為行業(yè)重要挑戰(zhàn)。傳統(tǒng)云計算模式下,車輛傳感器產(chǎn)生的海量數(shù)據(jù)需上傳至云端處理,往返延遲常導致緊急制動響應滯后數(shù)百毫秒,而這一毫秒級差距在高速行駛場景中可能引發(fā)致命事故。在此背景下,邊緣計算技術通過“本地化智能”重構數(shù)據(jù)處理范式,為自動駕駛系統(tǒng)提供了低延遲、高可靠的實時決策支持。作為國家高新的技術企業(yè),深圳市倍聯(lián)德實業(yè)有限公司憑借其在邊緣計算領域的深厚積累,正成為推動這一技術變革的關鍵力量。邊緣緩存技術通過預測用戶行為提前存儲熱門內容,減少重復數(shù)據(jù)傳輸。
邊緣計算資源有限,攻擊者利用僵尸網(wǎng)絡發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點算力。2024年某智能電網(wǎng)試點項目中,攻擊者通過偽造海量電力負荷數(shù)據(jù)請求,導致區(qū)域邊緣控制中心癱瘓2小時,影響10萬戶供電。更隱蔽的攻擊方式是針對邊緣AI模型的“數(shù)據(jù)投毒”,通過篡改訓練數(shù)據(jù)使模型誤判,某自動駕駛測試場曾因此發(fā)生碰撞事故。邊緣設備部署環(huán)境復雜,從工廠車間到野外基站,物理防護措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報警裝置,被不法分子直接拔除硬盤,導致地質勘探數(shù)據(jù)長久丟失。供應鏈環(huán)節(jié)同樣存在風險,某邊緣服務器廠商因使用被篡改的固件,導致交付的200臺設備均預置后門。自動駕駛車輛依賴邊緣計算實現(xiàn)本地化路徑規(guī)劃和障礙物識別,確保行車安全。自動駕駛邊緣計算使用方向
隨著AI芯片性能提升,邊緣計算將逐步承載更復雜的深度學習模型推理任務。廣東主流邊緣計算應用場景
在能源管理領域,其R500Q液冷服務器支持50kW單機柜功率密度,可連續(xù)365天無故障運行。在武漢某光伏電站的部署中,系統(tǒng)通過實時分析電池板溫度、光照強度等數(shù)據(jù),使發(fā)電效率提升8%,年減少碳排放1.2萬噸。倍聯(lián)德積極構建開放生態(tài),與華為、中國移動等企業(yè)建立深度合作。在江蘇某智慧園區(qū)項目中,雙方聯(lián)合部署的MEC專網(wǎng)實現(xiàn)三大創(chuàng)新:網(wǎng)絡切片隔離:通過5G硬切片技術,將園區(qū)監(jiān)控、工業(yè)控制、辦公上網(wǎng)等業(yè)務分流至不同虛擬網(wǎng)絡,確保關鍵任務時延低于5毫秒;UPF下沉部署:將用戶面功能(UPF)下沉至園區(qū)邊緣,使數(shù)據(jù)本地化處理率達85%,年節(jié)省帶寬費用超千萬元;應用生態(tài)聚合:開放邊緣平臺的API接口,吸引30余家ISV入駐,形成涵蓋安防、能源管理、物流優(yōu)化的應用生態(tài)。此外,倍聯(lián)德還與英特爾、英偉達等芯片廠商成立聯(lián)合實驗室,共同研發(fā)適用于邊緣場景的異構計算架構。其新推出的24重心Atom架構緊湊型邊緣服務器,功耗只350W,卻可支持8路1080P視頻流實時分析,使中小企業(yè)單條生產(chǎn)線部署成本從15萬元降至3.8萬元。廣東主流邊緣計算應用場景